Used with timeChart() or bucket(), computes the aggregate for one or more fields over a sliding window of data. This function can only be used as the function argument with timeChart() or bucket(). If used elsewhere, an error is reported to the user.

ParameterTypeRequiredDefaultDescription
bucketsintegeroptional[a]  Defines the number of buckets in the sliding time window i.e., the number of buckets in the surrounding timeChart() or bucket() to use for the running window aggregate. Exactly one of span and buckets should be defined.
function[b]Array of Aggregate Functionsoptional[a]count(as=_count) Specifies which aggregate functions to perform on each window.
spanlongoptional[a]  Defines the width of the sliding time window. This value is rounded to the nearest multiple of time buckets of the surrounding timeChart() or bucket(). The time span is defined as a Relative Time Syntax like 1 hour or 3 weeks. If the query's time interval is less than the span of the window, no window result is computed. Exactly one of span and buckets should be defined.

[a] Optional parameters use their default value unless explicitly set

[b] The argument name function can be omitted.

Omitted Argument Names

The argument name for function can be omitted; the following forms of this function are equivalent:

logscale
window("count(as=_count)")

and:

logscale
window(function="count(as=_count)")

These examples show basic structure only; full examples are provided below.

The window() computes the running aggregate (e.g. avg() or sum()) for the given incoming events. For each window, the window() takes the buckets parameter and uses this to calculate the rolling aggregate across that number of buckets in the input.

For example, this query calculates the rolling average over the preceding three buckets in the humio for allocBytes:

logscale
timechart(span=15s,function=window(function=avg(allocBytes), buckets=3))
|formatTime(field=_bucket,format="%T",as=fmttime)

Tip

Use the Data tab in Time Chart to view the raw data being used for the chart.

_bucket_avgfmttime
171152002500018410.01408450704206:13:45
171152004000023895.21418826739306:14:00
171152005500024428.8389715832206:14:15
171152007000024178.22099447513806:14:30
171152008500024718.23933975240706:14:45
171152010000018554.2295081967206:15:00
171152011500025638.9877551020406:15:15
171152013000018482.97079276773406:15:30
171152014500025925.1389270976606:15:45
171152016000019303.47252747252806:16:00
171152017500025806.0408163265306:16:15
171152019000017668.75524475524406:16:30
171152020500024431.55129958960206:16:45
171152022000017237.95604395604506:17:00
171152023500023476.79566982408506:17:15
171152025000015585.5708274894806:17:30
171152026500022664.58935879945406:17:45
171152028000016099.0413223140506:18:00

A graphical representation, showing the span of each computed window is shown below.

By comparison this query computes the value over the preceding 5 buckets:

logscale
timechart(span=15s,function=window(function=avg(allocBytes), buckets=3))
|formatTime(field=_bucket,format="%T",as=fmttime)

The computed average is different because a different series of values in different buckets is being used to compute the value:

_bucket_avgfmttime
171152002500017772.62295081967406:13:45
171152004000021970.35796387520506:14:00
171152005500022170.0445177246506:14:15
171152007000022505.8660049627806:14:30
171152008500023378.4730831973906:14:45
171152010000023568.35409836065406:15:00
171152011500023566.5202312138706:15:15
171152013000019816.21227197346506:15:30
171152014500024608.28781684382606:15:45
171152016000020315.03630363036406:16:00
171152017500024221.75020678246406:16:15
171152019000019854.06483790523606:16:30
171152020500023849.6993464052306:16:45
171152022000018996.48925619834706:17:00
171152023500022389.5090609555206:17:15
171152025000017751.33444259567506:17:30
171152026500021959.06840390879406:17:45
171152028000017377.42266335814606:18:00

This can be represented graphically like this:

If the number of buckets required by the sliding window to compute its aggregate result is higher than the number of buckets provided by the surrounding timeChart() or bucket() function, then the window() function will yield an empty result.

Any aggregate function can be used to compute sliding window data.

An example use case would be to find outliers, comparing a running average +/- running standard deviations to the concrete min/max values. This can be obtained by computing like this, which graphs the max value vs the limit value computed as average plus two standard deviations over the previous 15 minutes.

logscale
| timeChart(function=[max(m1),window([stdDev(m1),avg(m1)], span=15min)])
| groupBy(_bucket, function={ limit := _avg+2*_stddev
| table([_max, limit]) })

window() Examples

Chart 30 minutes running average of cpu load. The time interval of the query must be larger than the window span to produce any result.

logscale
timeChart(host, function=window( function=avg(cpu_load), span=30min ))

Chart 30 minutes running average and maximum of cpu load. This example specifies three buckets of the outer timechart (each of 10 minutes).

logscale
timeChart(host, function=window( function=[avg(cpu_load), max(cpu_load)], buckets=3 ), span=10m)