Calculate Hyperbolic Sine

Compute hyperbolic sine values using the math:sinh() function

Query

flowchart LR; %%{init: {"flowchart": {"defaultRenderer": "elk"}} }%% repo{{Events}} 1[[Expression]] 2["Expression"] result{{Result Set}} repo --> 1 1 --> 2 2 --> result
logscale
myvalue := 2.5
| math:sinh(myvalue, as=hyperbolic_sine)

Introduction

The math:sinh() function can be used to calculate the hyperbolic sine of a value. Unlike the regular sine function, hyperbolic sine can return any real number and is not bounded between -1 and 1.

In this example, the math:sinh() function is used to calculate the hyperbolic sine of a value, demonstrating how this hyperbolic function differs from regular trigonometric sine.

Example incoming data might look like this:

Step-by-Step

  1. Starting with the source repository events.

  2. flowchart LR; %%{init: {"flowchart": {"defaultRenderer": "elk"}} }%% repo{{Events}} 1[[Expression]] 2["Expression"] result{{Result Set}} repo --> 1 1 --> 2 2 --> result style 1 fill:#ff0000,stroke-width:4px,stroke:#000;
    logscale
    myvalue := 2.5

    Assigns the value 2.5 to a variable named myvalue for use in the hyperbolic calculation.

  3. flowchart LR; %%{init: {"flowchart": {"defaultRenderer": "elk"}} }%% repo{{Events}} 1[[Expression]] 2["Expression"] result{{Result Set}} repo --> 1 1 --> 2 2 --> result style 2 fill:#ff0000,stroke-width:4px,stroke:#000;
    logscale
    | math:sinh(myvalue, as=hyperbolic_sine)

    Calculates the hyperbolic sine of the value in the myvalue field and returns the result in a new field named hyperbolic_sine. The math:sinh() function computes the value using the formula (e^x - e^-x)/2, where e is Euler's number.

  4. Event Result set.

Summary and Results

The query is used to calculate hyperbolic sine values, which are important in various mathematical and physical applications.

This query is useful, for example, to analyze exponential growth patterns, solve differential equations, or process data in fields such as electrical engineering and physics where hyperbolic functions are commonly used.

Sample output from the incoming example data:

hyperbolic_sine
6.0502044

Note that the hyperbolic sine function is an odd function, meaning sinh(-x) = -sinh(x).