Transpose a (table-like) query result by creating an event (row) for each column (attribute name), in which attributes are named row[1], row[2], etc.

ParameterTypeRequiredDefaultDescription
columnstringoptional[a]column Field to use as column value.
headerstringoptional[a]  Use this field as header value.
limitintegeroptional[a]5 Maximum number of rows to transpose (limited to 1000).
  Maximum1000 
pivot[b]stringoptional[a]  Use this field as header AND column value.

[a] Optional parameters use their default value unless explicitly set.

[b] The argument name pivot can be omitted.

Hide omitted argument names for this function

Show omitted argument names for this function

For example, given a query that returns a table, such as:

logscale
groupby(loglevel)
loglevel _count
ERROR 2
WARN 400
INFO 200

The result can be transposed to:

logscale
groupby(loglevel)
| transpose()
column row[1] row[2] row[3]
_count 2 400 200
loglevel ERROR WARN INFO

To use the loglevel row as the header, use:

logscale
...
| transpose(header=loglevel)
column ERROR WARN INFO
_count 2 400 200

transpose() Examples

Create a Pivot Table

Query
flowchart LR; %%{init: {"flowchart": {"defaultRenderer": "elk"}} }%% repo{{Events}} 0{{Aggregate}} 1{{Aggregate}} 2[/Drop Field\] result{{Result Set}} repo --> 0 0 --> 1 1 --> 2 2 --> result style 2 fill:#2ac76d; click 2 #functions-transpose-examples-transpose-pivot-2
logscale
groupBy([type,actor.user.id],function={groupBy(actor.user.id, function=max(@timestamp))})
|transpose(header=type)
|drop(column)
Introduction

The humio-audit repository contains audit events for the LogScale cluster. Reporting on this information can provide a wealth of information, but a useful summary can be created based on the activities, users and which the latest user of that particular operation.

Step-by-Step
  1. Starting with the source repository events

  2. flowchart LR; %%{init: {"flowchart": {"defaultRenderer": "elk"}} }%% repo{{Events}} 0{{Aggregate}} 1{{Aggregate}} 2[/Drop Field\] result{{Result Set}} repo --> 0 0 --> 1 1 --> 2 2 --> result style 2 fill:#2ac76d; click 2 #functions-transpose-examples-transpose-pivot-2 style 0 fill:#ff0000,stroke-width:4px,stroke:#000;

    The first step to creating a pivot table is the base query that will create the initial summary of the information. In this fragment, a nested groupBy() aggregation. The embedded aggregation creates a group of the maximum access time for a given user, by using max() on the @timestamp against the actor.user.id. This creates a table of the last event by the user. The outer groupBy() then creates an aggregation of this maximum user time against the type which defines the operation performed.

    The result is a table of the last user and time for a specific operation; for example, the last time a query was executed. An example of this table can be seen below:

    type actor.user.id _max
    alert.clear-error 0O7WGPBX9YbvZbKOrBMd5fgH 1700546666592
    alert.create 0O7WGPBX9YbvZbKOrBMd5fgH 1699004139419
    alert.update 0O7WGPBX9YbvZbKOrBMd5fgH 1700546666676
    dashboard.create 0O7WGPBX9YbvZbKOrBMd5fgH 1698417330709
    dataspace.query 0O7WGPBX9YbvZbKOrBMd5fgH 1700721296197

    logscale
    groupBy([type,actor.user.id],function={groupBy(actor.user.id, function=max(@timestamp))})
  3. flowchart LR; %%{init: {"flowchart": {"defaultRenderer": "elk"}} }%% repo{{Events}} 0{{Aggregate}} 1{{Aggregate}} 2[/Drop Field\] result{{Result Set}} repo --> 0 0 --> 1 1 --> 2 2 --> result style 2 fill:#2ac76d; click 2 #functions-transpose-examples-transpose-pivot-2 style 1 fill:#ff0000,stroke-width:4px,stroke:#000;

    The transpose() will convert individual columns into rows, switching the orientation. For example, the type column will now become the type row. However, there are no row titles, so the title for the resulting table will by default create a header row containing the column and row numbers, like this:

    column row[1] row[2] row[3] row[4] row[5]
    _max 1700546666592 1699004139419 1700546666676 1698417330709 1700722209214
    actor.user.id 0O7WGPBX9YbvZbKOrBMd5fgH 0O7WGPBX9YbvZbKOrBMd5fgH 0O7WGPBX9YbvZbKOrBMd5fgH 0O7WGPBX9YbvZbKOrBMd5fgH 0O7WGPBX9YbvZbKOrBMd5fgH
    type alert.clear-error alert.create alert.update dashboard.create dataspace.query

    However, the aggregate grouping, type could be used instead as a valid header for each column. To achieve that, use the header parameter to specify type as the column. The resulting table now looks like this:

    alert.clear-error alert.create alert.update column dashboard.create dataspace.query
    1700546666592 1699004139419 1700546666676 _max 1698417330709 1700722210073
    0O7WGPBX9YbvZbKOrBMd5fgH 0O7WGPBX9YbvZbKOrBMd5fgH 0O7WGPBX9YbvZbKOrBMd5fgH actor.user.id 0O7WGPBX9YbvZbKOrBMd5fgH 0O7WGPBX9YbvZbKOrBMd5fgH

    logscale
    |transpose(header=type)
  4. flowchart LR; %%{init: {"flowchart": {"defaultRenderer": "elk"}} }%% repo{{Events}} 0{{Aggregate}} 1{{Aggregate}} 2[/Drop Field\] result{{Result Set}} repo --> 0 0 --> 1 1 --> 2 2 --> result style 2 fill:#2ac76d; click 2 #functions-transpose-examples-transpose-pivot-2 style 2 fill:#ff0000,stroke-width:4px,stroke:#000;

    The table created contains the summarized information pivoted around the user ID and last event time further summarized by the type of the event. However, there is a column in the table, column, which is now a field in the event stream that was generated from the old row before the table was pivoted.

    That column can be removed by dropping the column field from the event using drop() to remove the column from the events.

    logscale
    |drop(column)
  5. Event Result set

Summary and Results

Pivoting an event set of data allows for the information to be displayed and summarized in a format that may make more logical sense as a display format. The final table will look like this:

alert.clear-error alert.create alert.update dashboard.create dataspace.query
1700546666592 1699004139419 1700546666676 1698417330709 1700722210073
0O7WGPBX9YbvZbKOrBMd5fgH 0O7WGPBX9YbvZbKOrBMd5fgH 0O7WGPBX9YbvZbKOrBMd5fgH 0O7WGPBX9YbvZbKOrBMd5fgH 0O7WGPBX9YbvZbKOrBMd5fgH

Transpose a Basic Table

Query
flowchart LR; %%{init: {"flowchart": {"defaultRenderer": "elk"}} }%% repo{{Events}} 0{{Aggregate}} 1{{Aggregate}} 2[/Drop Field\] result{{Result Set}} repo --> 0 0 --> 1 1 --> 2 2 --> result style 2 fill:#2ac76d; click 2 #functions-transpose-examples-transpose-basic-2
logscale
groupby([loglevel)
| transpose(header=loglevel)
| drop(column)
Introduction

By transposing event set, the information can be viewed and summarized in a more human readable form. Transposing also allows for aggregated data to be viewed in a form where the value of an aggregated field becomes the columns. This can be used to summarize the information further by showing multiple rows of data. For example, in the humio repository the event information contains a list of errors, warnings, or informational events for activity within the cluster.

Step-by-Step
  1. Starting with the source repository events

  2. flowchart LR; %%{init: {"flowchart": {"defaultRenderer": "elk"}} }%% repo{{Events}} 0{{Aggregate}} 1{{Aggregate}} 2[/Drop Field\] result{{Result Set}} repo --> 0 0 --> 1 1 --> 2 2 --> result style 2 fill:#2ac76d; click 2 #functions-transpose-examples-transpose-basic-2 style 0 fill:#ff0000,stroke-width:4px,stroke:#000;

    First, aggregate the lows by the loglevel. This field will either be WARN, ERROR or INFO depending on the level of the event log entry. The default function is used, which results in a count in the number of times an event of this type has been seen:

    loglevel _count
    ERROR 27424
    INFO 18840156
    WARN 2059898

    In this output, each event is a row in the table, each with two fields, loglevel and _count.

    logscale
    groupby([loglevel)
  3. flowchart LR; %%{init: {"flowchart": {"defaultRenderer": "elk"}} }%% repo{{Events}} 0{{Aggregate}} 1{{Aggregate}} 2[/Drop Field\] result{{Result Set}} repo --> 0 0 --> 1 1 --> 2 2 --> result style 2 fill:#2ac76d; click 2 #functions-transpose-examples-transpose-basic-2 style 1 fill:#ff0000,stroke-width:4px,stroke:#000;

    Transposing the events within the transpose() will make each field in each event a row in the new stream of events, i.e. the loglevel field with the value ERROR will become the field ERROR, swapping the rows for columns. By using the header parameter, transpose() uses the value of the aggregated field as the fieldname. The output will now be a table with a column (field) for each value, and a single row with the count:

    ERROR INFO WARN column
    97159 63719404 5716733 _count

    logscale
    | transpose(header=loglevel)
  4. flowchart LR; %%{init: {"flowchart": {"defaultRenderer": "elk"}} }%% repo{{Events}} 0{{Aggregate}} 1{{Aggregate}} 2[/Drop Field\] result{{Result Set}} repo --> 0 0 --> 1 1 --> 2 2 --> result style 2 fill:#2ac76d; click 2 #functions-transpose-examples-transpose-basic-2 style 2 fill:#ff0000,stroke-width:4px,stroke:#000;

    In the final output, the column field in the events is the one generated from the field names of the original events and it's not needed, so it can be removed by using the drop() function to remove the field from the event set.

    logscale
    | drop(column)
  5. Event Result set

Summary and Results

The transpose() is a great way of reorganizing data into a format is either more readable, or easily applied to other display formats as part of a widget. The final table looks like this:

ERROR INFO WARN
97159 63719404 5716733

However, the information as it is now formatted can more easily be applied to a variety of visualizations. For example, the data can be formatted as a bar chart, as we now have a list of fields and a value:

The difference is that without transpose(), the aggregate result set is a list of events with a field name and value. With transpose(), the result set is a single event with multiple fields, and this is interpreted by the bar chart as a series of values.